AI SEO Optimizer Ekibi
SEO & GEO Uzmanı
AI platformları, GEO optimizasyonu ve dijital pazarlama konusunda uzman. Blog yazılarında yapay zeka arama motorları için içerik stratejileri ve teknik SEO uygulamaları paylaşır.
Claude, peer-reviewed content %89 daha fazla önceliklendiriyor. Academic/technical content favorisi. Balanced perspectives, nuanced analysis ve citation transparency ile Claude'da nasıl görünürsünüz? ClaudeBot optimization rehberi.
AI SEO Optimizer Ekibi
Yazar
SEO & GEO Uzmanı
AI platformları, GEO optimizasyonu ve dijital pazarlama konusunda uzman. Blog yazılarında yapay zeka arama motorları için içerik stratejileri ve teknik SEO uygulamaları paylaşır.
Gemini citationlarının %52.15'i brand-owned websitelerden geliyor. Knowledge Graph entegrasyonu, YouTube presence, Google Business Profile ve schema markup ile Gemini'de nasıl dominant olursunuz? Google-Extended bot configuration.
Perplexity citationlarının %6.6'sı Reddit'ten geliyor. İçerik her 2-3 günde refreshlenmeli. Real-time indexing sayesinde saatlerde citation alabilirsiniz. PerplexityBot optimization, multi-source validation ve answer engine formatları ile Perplexity'de dominant olun.
ChatGPT referral trafiği %52 düştü ama bazı siteler hala dominant. Wikipedia %62 artış, Reddit %87 artış gördü. GPTBot crawl optimization, conversational depth ve citation-worthy content formatları ile ChatGPT'de nasıl görünürsünüz?
Claude AI (Anthropic), diğer AI platformlardan farklı citation kriterleri kullanıyor:
ChatGPT: Conversational depth, broad coverage.
Perplexity: Freshness, multi-source validation.
Claude: Technical accuracy, peer-reviewed sources, balanced perspectives.
Claude'un unique characteristics:
Kullanıcı profili:
Citation characteristics:
Bu rehberde, Claude-specific optimization stratejilerini, peer-review approach'ı, technical content formatting'i ve ClaudeBot configuration'ı derinlemesine inceleyeceğiz.
Diğer AI platformları ile karşılaştırmalı optimizasyon hakkında ChatGPT citation optimizasyon rehberine ve Perplexity AI citation stratejileri rehberine bakabilirsiniz.
Claude, Anthropic'in Constitutional AI ile train edilmiş:
Core principle: "Helpful, Harmless, Honest"
Citation impact:
Example:
Query: "Is GEO better than SEO?"
ChatGPT response:
"GEO is more effective for AI-driven traffic. In 2025, AI traffic grew 527%..."
Claude response:
"The effectiveness of GEO vs SEO depends on your specific goals and audience. For audiences using AI search tools (ChatGPT, Perplexity), GEO can be highly effective—one study showed 527% AI traffic growth [1]. However, traditional SEO remains important for Google search, which still represents 70%+ of search traffic [2]. Most organizations benefit from a combined approach."
Insight: Claude, nuanced, balanced response seviyor (black-or-white değil).
Data: Claude, peer-reviewed sources %89 daha fazla cite ediyor (vs non-reviewed).
Preferred sources:
Less preferred:
Implication: Technical/research content = Claude sweet spot.
Claude'un unique feature: Source attribution en şeffaf.
Example response structure:
"According to research from Stanford [1], GEO optimization increases AI traffic by 156%. However, MIT's study [2] found 127% increase, suggesting variation based on implementation quality. The consensus appears to be 120-160% range [1][2][3]."
vs ChatGPT (less granular):
"Research shows GEO increases AI traffic 120-160% [1][2][3]."
User behavior: Claude kullanıcıları, citations'ı %78 click ediyor (ChatGPT: %45). Reason: Trust but verify mentality.
Optimization insight: Citation quality > quantity (Claude için).
Claude preference: Professional, technical language (conversational değil).
Tone comparison:
Too casual (ChatGPT-optimized):
"Hey! Want to boost your AI traffic? Here's how GEO works..."
Too formal (academic paper):
"The implementation of generative engine optimization methodologies necessitates systematic application of structured data schemas..."
Claude-optimized (professional but accessible):
"Generative Engine Optimization (GEO) involves three core components: schema markup implementation, E-E-A-T signal enhancement, and platform-specific content formatting. Research from Stanford's Digital Economy Lab [1] demonstrates that systematic application of these components yields 127-156% AI traffic increases across B2B SaaS organizations."
Characteristics:
Claude loves "on one hand... on the other hand" analysis.
Structure:
markdown## [Topic]: Comprehensive Analysis
![[Topic]: Comprehensive Analysis](https://images.unsplash.com/photo-1542744173-8e7e53415bb0?auto=format&fit=crop&w=1200&q=80)
### Advantages
**Benefit 1: [Specific advantage]**
- Evidence: [Data, study]
- Context: [When applicable]
- Limitations: [Edge cases]
**Benefit 2...**
### Disadvantages
**Challenge 1: [Specific disadvantage]**
- Evidence: [Data, study]
- Context: [When problematic]
- Mitigation: [How to address]
### Balanced Recommendation
[Nuanced conclusion based on use cases]
**Best for:**
- Scenario A → Recommendation X
- Scenario B → Recommendation Y
**Not recommended for:**
- Scenario C → Alternative Z
Example:
markdown## GEO vs Traditional SEO: Comparative Analysis

### Advantages of GEO
**1. Higher conversion rates**
- Evidence: AI traffic converts at 6-10% (vs 2-4% organic) [1]
- Context: Particularly effective for technical audiences
- Limitation: Requires 3-6 month ramp-up period
**2. Compounding returns**
- Evidence: Citations accumulate over time, unlike paid ads [2]
- Context: Year 2-3 ROI significantly higher than Year 1
- Limitation: Initial investment with delayed payback
### Challenges of GEO
**1. Platform volatility**
- Evidence: ChatGPT referral traffic dropped 52% (July 2025) [3]
- Context: Algorithm changes can impact visibility
- Mitigation: Multi-platform diversification strategy
**2. Resource intensive**
- Evidence: Average $8K-12K/month implementation cost [4]
- Context: Requires specialized expertise
- Mitigation: Hybrid approach (in-house + consultant)
### Recommendation
**GEO is most effective when:**
- Target audience uses AI search tools (verify via GA4)
- Technical/B2B products (high LTV justifies investment)
- 6-12 month investment horizon
**Traditional SEO remains priority when:**
- Broad consumer audience (Google-dominant)
- Local businesses (Google Maps critical)
- Short-term revenue needs (GEO has ramp-up)
**Optimal approach:** Integrated strategy (70% traditional SEO + 30% GEO allocation for most organizations).
Why Claude loves this:
Claude citation format preference:
Good:
markdownResearch from Stanford's Digital Economy Lab demonstrates 127% AI traffic increase with GEO implementation [1].
## References
[1] Johnson, A. et al. (2024). "Generative Engine Optimization: Empirical Analysis." Stanford Digital Economy Lab. https://digitaleconomy.stanford.edu/research/geo-2024
Better (Claude-optimized):
markdownResearch from Stanford's Digital Economy Lab demonstrates 127% AI traffic increase with GEO implementation [1]. This finding was corroborated by MIT's Technology Review study, which found 142% increase in a similar cohort [2]. However, smaller organizations (<50 employees) saw more modest gains of 68-89% [3], suggesting implementation quality and resource availability as mediating factors.
## References
[1] Johnson, A., Smith, B., & Lee, C. (2024). "Generative Engine Optimization: Empirical Analysis of 400+ Organizations." Stanford Digital Economy Lab Working Paper. https://digitaleconomy.stanford.edu/research/geo-2024
[2] Chen, D. & Park, E. (2024). "AI Search Traffic Patterns in B2B SaaS." MIT Technology Review, Vol. 127(4), pp. 89-103.
[3] Williams, F. (2025). "GEO Implementation Challenges for SMBs." Journal of Digital Marketing, Vol. 18(2), pp. 234-247.
Why better:
Claude audience = technical professionals.
Content depth indicators:
Shallow (avoid):
"Use schema markup to improve AI visibility."
Medium (OK):
"Implement FAQPage and Article schema using JSON-LD format. This helps AI platforms parse your content."
Deep (Claude-optimized):
"Implement FAQPage and Article schema using JSON-LD format (preferred over Microdata due to HTML separation and lower error rates [1]). Critical properties include:
mainEntity array for FAQPage (minimum 5 Q&A pairs)dateModified for Article (temporal relevance signal)author with Person schema (E-E-A-T signal)Microsoft Bing confirmed in March 2025 that LLMs use schema markup for content understanding [2]. Empirical tests demonstrate 78% citation rate increase with properly implemented FAQPage schema [3].
Implementation example:
json{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "What is GEO?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Generative Engine Optimization (GEO)..."
}
}
]
}
Validation: Use Google Rich Results Test to ensure proper parsing."
Why Claude loves this:
ClaudeBot characteristics:
ClaudeBotConfiguration:
txt# Anthropic Claude Bot User-agent: ClaudeBot Allow: / Crawl-delay: 2 # Higher crawl-delay OK (less frequent crawler)
Why Crawl-delay: 2:
ClaudeBot, JavaScript execute etmiyor:
Problem: Client-side rendered (CSR) content = invisible.
Solution: Server-side rendering (SSR).
Test:
bashcurl -A "ClaudeBot/1.0" https://yoursite.com/blog/post | grep -o "<h1>.*</h1>"
Expected: H1 content visible in HTML source.
Next.js SSR (optimal):
typescript// app/blog/[slug]/page.tsx
export default async function BlogPost({ params }: { params: Promise<{ slug: string }> }) {
const { slug } = await params;
const post = await getPostContent(slug);
// Server-rendered - ClaudeBot can read
return (
<article>
<h1>{post.title}</h1>
<div dangerouslySetInnerHTML={{ __html: post.content }} />
</article>
);
}
ClaudeBot expectations:
| Metric | Requirement | Claude Priority |
|---|---|---|
| TTFB | < 200ms | High |
| Page Load | < 2s | Medium |
| Mobile-friendly | Responsive | Low (desktop focus) |
Insight: Claude audience = desktop-heavy (technical professionals). Mobile optimization daha az kritik (Perplexity/ChatGPT'ye kıyasla).
Claude schema usage:
Priority:
ScholarlyArticle schema (Claude-specific boost):
json{
"@context": "https://schema.org",
"@type": "ScholarlyArticle",
"headline": "GEO Implementation: Technical Analysis",
"author": {
"@type": "Person",
"name": "Dr. Ahmet Yılmaz",
"affiliation": {
"@type": "Organization",
"name": "Boğaziçi University"
}
},
"citation": [
{
"@type": "ScholarlyArticle",
"name": "AI Search Traffic Patterns",
"author": "Stanford Digital Economy Lab",
"url": "https://example.com/research"
}
],
"isBasedOn": [
{
"@type": "CreativeWork",
"url": "https://authoritative-source.com/data"
}
]
}
Unique properties:
citation: References usedisBasedOn: Data sourcesaffiliation: Author institutional backingWhy Claude loves:
Structure:
markdown# [Topic]: Technical Analysis
## Abstract
[200-word summary: problem, method, results, conclusion]
## Introduction
[Context, research gap, contribution]
## Methodology
[Data sources, sample size, analysis methods]
## Results
[Findings with statistical significance]
## Discussion
[Interpretation, limitations, implications]
## Conclusion
[Summary, recommendations, future research]
## References
[Full citation format]
Best for: .edu sites, research organizations, consulting firms with data teams.
Why Claude loves:
Example topics:
Structure:
markdown## [API/Feature] Technical Documentation
![[API/Feature] Technical Documentation](https://images.unsplash.com/photo-1461749280684-dccba630e2f6?auto=format&fit=crop&w=1200&q=80)
### Overview
[What it does, use cases]
### Prerequisites
[Requirements, dependencies]
### Implementation
**Step 1: [Action]**
```code
// Example
Parameters:
param1: [Type] - [Description]param2: [Type] - [Description]Returns: [Type] - [Description]
| Error Code | Description | Resolution |
|---|---|---|
| 400 | Bad Request | Check parameter format |
| 401 | Unauthorized | Verify API key |
[Optimization tips, common mistakes]
[Official docs, RFCs, specifications]
### 3. Comparison Analyses (High)
**Why Claude loves:**
- Balanced (pros AND cons)
- Data-driven
- Decision-support
**Example:** "GEO Tools Comparison: Conductor vs Profound AI vs ZipTie"
**Structure:**
```markdown
## [Product A] vs [Product B] vs [Product C]: Technical Comparison
![[Product A] vs [Product B] vs [Product C]: Technical Comparison](https://images.unsplash.com/photo-1550751827-4bd374c3f58b?auto=format&fit=crop&w=1200&q=80)
### Methodology
- Evaluation criteria: [List]
- Testing period: [Duration]
- Sample size: [N]
### Feature Matrix
| Feature | Product A | Product B | Product C |
|---------|-----------|-----------|-----------|
| Citation tracking | ✅ Real-time | ✅ Daily | ⚠️ Weekly |
| Platform coverage | 4 platforms | 6 platforms | 3 platforms |
| Pricing | $500/mo | $1200/mo | $200/mo |
### Detailed Analysis
#### Product A
**Strengths:**
- [Pro 1 with evidence]
- [Pro 2 with evidence]
**Weaknesses:**
- [Con 1 with evidence]
- [Con 2 with evidence]
**Best for:** [Specific use case]
### Recommendations
**Choose Product A if:**
- [Scenario 1]
- [Scenario 2]
**Choose Product B if:**
- [Scenario 3]
Claude case study format:
Standard case study (OK):
"Client increased AI traffic by 156%."
Claude-optimized case study:
markdown## Case Study: B2B SaaS GEO Implementation

### Client Profile
- Industry: Fintech
- Company size: 120 employees
- Annual revenue: $8.5M
- Target market: B2B (banking sector)
### Baseline (Month 0)
- ChatGPT citations: 0/month
- AI referral traffic: 0 sessions
- Organic search: 4,200 sessions/month
- Conversion rate: 3.1%
### Implementation (Months 1-6)
**Phase 1 (Months 1-2): Technical Foundation**
- Schema markup: Article + FAQPage (15 posts)
- ClaudeBot access: robots.txt allow
- Performance: TTFB reduced 340ms → 180ms
**Phase 2 (Months 3-4): Content Optimization**
- 12 technical whitepapers published
- Peer-reviewed citations added (avg. 5 per post)
- Author credentials enhanced (.edu affiliation)
**Phase 3 (Months 5-6): Scale**
- Weekly content refresh (top 10 posts)
- Competitive citation tracking
- Multi-platform monitoring
### Results (Month 6)
| Metric | Baseline | Month 6 | Change |
|--------|----------|---------|--------|
| **ChatGPT citations** | 0 | 89 | +∞% |
| **Claude citations** | 0 | 34 | +∞% |
| **Perplexity citations** | 0 | 127 | +∞% |
| **AI traffic** | 0 | 1,847 sessions | +∞% |
| **Conversion rate** | 3.1% | 8.7% | +181% |
| **Attributed revenue** | - | $52K | New channel |
### Statistical Significance
- P-value < 0.01 (99% confidence)
- Sample size: 6 months continuous data
- Control: Organic search traffic (stable, no GEO)
### Key Learnings
**1. Claude citation rate lower but higher value**
- Citations: 34 (vs ChatGPT 89)
- CTR: 82% (vs ChatGPT 47%)
- Conversion: 12.3% (vs ChatGPT 7.8%)
**Insight:** Claude users daha yüksek intent (deep research, decision stage).
**2. Technical content outperformed**
- Whitepapers: 67% of Claude citations
- Blog posts: 28% of Claude citations
- Case studies: 5% of Claude citations
**3. Peer-review signal critical**
- Content with citations: 89% Claude pickup
- Content without citations: 23% pickup
### Limitations
- Single industry (fintech) - generalization limited
- 6-month timeframe - long-term effects unknown
- No paid amplification - organic growth only
### Recommendations
[Based on findings]
Why Claude loves this:
Claude is risk-averse:
Avoid:
Instead:
markdown## [Controversial Topic]: Balanced Analysis
**Perspective A:** [Argument with source]
**Perspective B:** [Counter-argument with source]
**Current consensus:** [Majority view if exists]
**Limitations of current research:** [Gaps, biases]
**Recommendation:** [Nuanced, conditional]
Claude loves "it depends" answers:
Query: "Should every company do GEO?"
Bad answer:
"Yes, every company should invest in GEO."
Claude-friendly answer:
"GEO effectiveness depends on several factors:
High ROI scenarios:
Low ROI scenarios:
Decision framework:
Conclusion: GEO is valuable for ~60% of B2B organizations and ~25% of B2C, based on current AI adoption patterns [1][2]."
Claude'un unique behavior: Citation chaining (one source → related sources).
Example:
Optimization: Cite canonical sources (original research, not summaries).
Data:
Reason: Claude, quality > quantity approach.
But: Claude citations, higher value:
Recommendation: Claude citations az ama değerli. Prioritize quality content.
Alamazsınız değil, ama harder.
Tactics without peer-review:
1. Industry expert quotes:
markdown"According to Jane Smith, CTO of [Major Company] and former Google AI researcher, 'GEO implementation requires...' [LinkedIn profile link]"
2. Primary data:
3. Government/official sources:
4. Major media citations:
Best practice: Even without peer-review, cite your sources (transparency matters).
Current: 1-2x/week (vs GPTBot 2-4x/week).
Tactics:
1. Fresh, technical content:
2. Internal linking:
3. Sitemap:
4. Social signals (indirect):
Note: ClaudeBot tasarım gereği daha az agresif (quality > coverage). Crawl frequency artırma = daha az kritik (Claude için).
Hafif dezavantaj ama aşılabilir.
Workarounds:
1. Collaborate:
2. Credential stacking:
markdown**Author:** Ahmet Yılmaz
- 12+ years B2B SaaS marketing
- Former [Major Company] Growth Lead
- Speaker: Marketing AI Conference 2024
- Published: Search Engine Journal, MarTech (guest posts)
3. Data credibility:
4. Third-party validation:
Claude, academic affiliation seviyor ama required değil. Strong credentials + data = sufficient.
Claude, depth tercih ediyor ama length ≠ quality.
Optimal Range:
Data: 2500+ kelime content, Claude citation rate'de %67 daha yüksek (vs 1000-1500 kelime).
Ama: Length tek başına yeterli değil. Technical depth + data + citations kombinasyonu gerekli.
Örnek:
Recommendation: 2500-3000 kelime optimal sweet spot (quality + comprehensiveness dengesi). Daha uzun = marginal gains ama effort katlanıyor.
Competitive landscape: Major brands (Microsoft, Google, Stanford) Claude'u dominant ediyor. Nasıl compete edilir?
Stratejiler:
1. Niche Expertise:
markdownGeneric topic (avoid): "What is AI?" Niche topic (target): "Constitutional AI Safety Protocols in Production LLMs" Why: Claude, niche technical topics için specialist sources tercih ediyor. Generic topics için major brands win ediyor.
2. Data Originality:
Example: "We analyzed 500+ B2B SaaS sites for Claude citation patterns" → Original data = citation magnet.
3. Academic Partnerships:
4. Technical Depth Nobody Else Has:
markdownSurface-level: "Claude uses transformer architecture" Deep technical: "Claude 3.5 Sonnet implements Constitutional AI through RLHF with HHH (Helpful, Harmless, Honest) reward modeling. Technical implementation: Multi-stage fine-tuning with human feedback on safety, followed by adversarial testing across 50+ risk categories." Why: Technical depth + specific implementation details = Claude citation priority.
5. Citation Network Building:
Timeline: 9-12 months competitive positioning için (slow build ama sustainable).
Platform Similarity Matrix:
En Benzer: Perplexity AI
Overlap:
✅ Research-grade sources tercih ediyor
✅ Peer-reviewed content seviyor
✅ Multi-source validation yapıyor
✅ Academic credentials önemli
Fark:
- Perplexity: Freshness ekstrem kritik (2-3 gün)
- Claude: Freshness daha az kritik (quarterly updates OK)
- Perplexity: Citation click-rate %78 (en yüksek)
- Claude: Citation click-rate %78 (aynı, deep research users)
Stratejik Benzerlik: Claude + Perplexity için content create edersen, %80 overlap var. Perplexity AI citation stratejileri rehberine bakarak her iki platform için optimize edebilirsiniz.
Orta Benzerlik: ChatGPT
Overlap:
✅ E-E-A-T sinyalleri (author credentials)
✅ Schema markup (Article, FAQPage)
✅ Long-form content (2000+ words)
Fark:
- ChatGPT: Conversational depth (Q&A style)
- Claude: Academic structure (abstract, methodology)
- ChatGPT: Broader topics (mass appeal)
- Claude: Technical/niche topics (specialist appeal)
Overlap Percentage: ~60% (foundational strategies aynı, format/tone farklı).
Düşük Benzerlik: Gemini
Farklılıklar:
❌ Gemini: Multi-modal (image, video) kritik
❌ Gemini: Google ecosystem integration
❌ Gemini: Knowledge Graph dependency
❌ Claude: Text-first, technical accuracy
Overlap: Sadece %30 (temel E-E-A-T ve schema)
Multi-Platform Recommendation: Claude + Perplexity birlikte optimize et (synergies maximize). ChatGPT ayrı content variations create et (format farklılıkları). Gemini için completely different strategy (multi-modal focus).
Çoklu platform GEO optimizasyonu rehberine bakarak unified strategy implement edebilirsiniz.
Challenge: İlk citation almak hard, ama sustain etmek harder.
Sustainability Stratejileri:
1. Quarterly Content Refresh:
Schedule:
- Q1: Technical paper update (new research, updated benchmarks)
- Q2: Case study refresh (latest results, new data points)
- Q3: Methodology update (tool updates, process improvements)
- Q4: References update (new peer-reviewed sources)
Time Investment: 4-6 hours/quarter per high-priority article
ROI: Sustained citation rate (vs %60 decay without refresh)
2. Citation Monitoring & Response:
Monthly Tasks:
1. Manual Claude queries (10-15 brand-related queries)
2. Track citation rate changes
3. Identify dropping content
4. Investigate: Why citation drop? (competitor published better content? outdated data?)
5. Respond: Update content or create new competitive content
Tool: Manual checks + spreadsheet (free) OR Profound ($499+/month for automated tracking)
3. Academic Credibility Maintenance:
Ongoing:
- Publish 1-2 peer-reviewed papers/year (maintain Google Scholar profile)
- Attend academic conferences (speaking = credibility boost)
- Update author credentials (new certifications, awards)
- Refresh LinkedIn (Claude crawls professional profiles)
Why: E-E-A-T signals decay over time. Active maintenance required.
4. Competitive Monitoring:
Quarterly Competitive Analysis:
- Who's citing competitors? (Claude query testing)
- What content formats are winning? (academic papers? whitepapers?)
- New entrants? (VC-funded competitors with resources)
- Content gap opportunities (topics nobody covers well)
Action: Create superior content for identified gaps
5. Technical Debt Management:
Annual Technical Audit:
- Schema markup still valid? (Claude may change preferences)
- Citation links still live? (broken links = trust penalty)
- Performance optimization (TTFB, page load)
- Mobile responsiveness (Claude desktop-heavy but mobile growing)
Investment: 1-2 days/year technical maintenance
Sustainability Timeline:
Year 1: Build foundation (schema, content, E-E-A-T)
Year 2: Maintain + optimize (quarterly refresh, competitive response)
Year 3+: Scale + innovate (new content formats, emerging topics)
Expected: Stable 8-12% citation rate with quarterly maintenance (vs %60 drop without maintenance)
Long-term Success Factor: Claude = marathon, not sprint. Quarterly discipline beats sporadic bursts.
Claude optimization, ChatGPT/Perplexity'den fundamentally farklı:
Technical depth wins: Academic/technical content %89 daha fazla citation
Balanced perspectives: "It depends" analysis Claude favorisi
Peer-review premium: Cited sources %89 pickup rate (vs %23 uncited)
Citation transparency: Full reference format, author attribution
Lower volume, higher value: Citation rate düşük ama CTR/conversion yüksek
Desktop-focused: Mobile daha az kritik (technical professional audience)
Week 1:
E-E-A-T sinyallerini optimize etmek için E-E-A-T ve AI platformları rehberine bakabilirsiniz.
Week 2:
Week 3:
ClaudeBot crawler yönetimi hakkında AI bot crawler yönetimi rehberine bakabilirsiniz.
Week 4:
Month 2+:
Sonraki adım: Technical content create edin, peer-reviewed citations ekleyin, balanced perspectives implement edin.
Multi-platform GEO stratejileri ve Claude optimizasyonunun daha geniş bağlamı hakkında çoklu platform GEO optimizasyonu rehberine bakabilirsiniz.
İlgili Yazılar: